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Abstract

Tracking objects with persistence in cluttered and dy-
namic environments remains a difficult challenge for com-
puter vision systems. In this paper, we introduce TCOW,
a new benchmark and model for visual tracking through
heavy occlusion and containment. We set up a task where
the goal is to, given a video sequence, segment both the pro-
jected extent of the target object, as well as the surrounding
container or occluder whenever one exists. To study this
task, we create a mixture of synthetic and annotated real
datasets to support both supervised learning and structured
evaluation of model performance under various forms of
task variation, such as moving or nested containment. We
evaluate two recent transformer-based video models and
find that while they can be surprisingly capable of track-
ing targets under certain settings of task variation, there re-
mains a considerable performance gap before we can claim
a tracking model to have acquired a true notion of object
permanence.

1. Introduction
The interplay between containment and occlusion can

present a challenge to even the most sophisticated visual
reasoning systems. Consider the pictorial example in Fig-
ure 1a. Given four frames of evidence, where is the red ball
in the final frame? Could it be anywhere else? What visual
evidence led you to this conclusion?

In this paper, we explore the problem of tracking and
segmenting a target object as it becomes occluded or con-
tained by other dynamic objects in a scene. This is an
essential skill for a perception system to attain, as objects
of interest in the real world routinely get occluded or con-
tained. Acquiring this skill could, for example, help a robot
to better track objects around a cluttered kitchen or ware-
house [10], or a road agent to understand traffic situations
more richly [66]. There are also applications in augmented
reality, smart cities, and assistive technology.

It has long been known that this ability, commonly re-
ferred to as object permanence, emerges early on in a child’s
lifetime (see e.g. [2, 3, 5–8, 53, 58–61]). But how far away

Figure 1. Containment (a) and occlusion (b) happen constantly
in the real world. We introduce a novel task and dataset for evalu-
ating the object permanence capabilities of neural networks under
diverse circumstances.

are computer vision systems from attaining the same?
To support the study of this question, we first propose a

comprehensive benchmark video dataset of occlusion- and
containment-rich scenes of multi-object interactions. These
scenes are sourced from both simulation, in which ground
truth masks can be perfectly synthesized, and from the real
world, which we hand-annotate with object segments. To
allow for an extensive analysis of the behaviours of exist-
ing tracking systems, we ensure that our evaluation set cov-
ers a wide range of different types of containment and oc-
clusion. For example, even though an object undergoing
containment is already a highly non-trivial event, contain-
ers can move, be nested, be deformable, become occluded,
and much more. Occlusion can introduce considerable un-
certainty, especially when the occludee, the occluder, or the
camera are in motion on top of everything else.

Using our dataset, we explore the performance of two re-
cent state-of-the-art video transformer architectures, which
we repurpose for the task of tracking and segmenting a
target object through occlusion and containment in RGB
video. We show through careful quantitative and qualitative
analyses that while our models achieve reasonable tracking
performance in certain settings, there remains significant
room for improvement in terms of reasoning about object
permanence in complicated, realistic environments. By re-
leasing our dataset and benchmark along with this paper, we
hope to draw attention to this challenging milestone on the
path toward strong spatial reasoning capabilities.
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2. Related Work

Benchmarks for object permanence have begun to appear
in our community in recent years, but naturalistic datasets
to support this study remain scarce. LA-CATER [57], based
on the CATER dataset [29], is a recent example of a syn-
thetic benchmark in which additional localization annota-
tions for the target object were introduced when it is con-
tained, occluded, or carried. More photo-realistic simula-
tion has been applied for studying object permanence in the
works of PermaTrack [64], which uses ParallelDomain [1],
and 4D dynamic scene completion [66], which relies on
CARLA [24].

Notably, most prior datasets and methods focus on lo-
calizing occluded objects with a bounding box. In contrast,
we focus on a more precise video object segmentation set-
ting. Moreover, rather than attempting to perfectly localize
the invisible instance, which is not always possible in prac-
tice, we extend the setting of the problem to segmenting the
occluder instead in ambiguous scenarios. Finally, we intro-
duce a clear distinction between containment and occlusion
at the output level.

Object permanence methods in computer vision were
mostly studied in the context of multi-object tracking - the
task of localizing all the objects from a pre-defined vocab-
ulary with bounding boxes and associating them over time
based on identity [28, 45, 46]. As objects only need to be
localized when they are visible, occlusions can be handled
by simple re-association, but it has been shown that main-
taining a hypothesis about the location of invisible objects
can help reduce the number of identity switches [13].

To this end, most approaches rely on a simple constant
velocity heuristic [15,47,75], which propagates the last ob-
served location of an object with a linear motion model. It
is, however, only robust when the camera is static and the
object velocity does not change significantly during the oc-
clusion (e.g. because it is short). More complex, heuristic-
based methods include [38,50], which localize invisible ob-
jects by modeling inter-occlusion relationships, and [30]
which capitalizes on the correlation between the motion of
visible and invisible instances.

More recently, several learning-based methods for local-
izing invisible objects have been proposed. [57] takes pre-
computed bounded boxes for visible objects as input and
passes them through a recurrent network [35] that is trained
to predict the bounding box for the occluded target. In [64]
and [63], authors propose end-to-end models that are ca-
pable of localizing and associating both visible and invisi-
ble instances by capitalizing on a spatiotemporal recurrent
memory [9, 39].

Video object segmentation (VOS) is defined as the prob-

lem of pixel-accurate separation of foreground objects from
the background in videos. In the semi-supervised VOS set-
ting [42, 52], an algorithm is given ground truth masks for
objects of interest in the first frame, and has to segment and
track them for the rest of the video.

Most existing methods focus on accurately capturing ob-
ject boundaries and visual appearance rather than model-
ing complex spatiotemporal phenomena such as object per-
manence. In particular, the earliest learning-based meth-
ods [18,40,69] pre-trained a CNN for binary object segmen-
tation on static image datasets, such as COCO [43], and then
separately fine-tuned this model on the first frame of the test
video for each instance. Evaluating the resulting network on
the remaining frames yields fairly strong accuracy, outper-
forming earlier, heuristic-based methods [4, 26, 32]. How-
ever, this approach remains computationally expensive and
is not robust to appearance changes, let alone occlusion.

These limitations were later addressed in [19, 37, 72],
which replace expensive fine-tuning with cheap match-
ing, and in [44, 51, 68], where online adaptation mecha-
nisms are introduced for modeling the appearance of the
target. More recently, memory-based models have be-
come the mainstream approach for video object segmenta-
tion [20,48,49,56,73,74]. Generally speaking, these meth-
ods store feature maps of previous frames together with pre-
dicted instance masks in memory. They then retrieve the
closest patch with its corresponding label for every patch in
the current frame to compute a segmentation.

While these approaches demonstrate impressive perfor-
mance on existing benchmarks for tracking visible objects,
their reliance on visual appearance-based matching means
that they cannot segment what they cannot see. In this work,
we extend the traditional VOS setting to include segmenting
(the occluders and containers of) fully invisible objects, as
well as amodally completing partially visible ones [77]. We
then evaluate the state-of-the-art AOT approach [73] and
demonstrate that it indeed fails in this challenging scenario.
Finally, we propose a simple modification of TimeSFormer,
a transformer for video [11, 22, 67], to localize both visi-
ble and invisible objects, as well as distinguish containment
from occlusion.

Sim2real. Leveraging simulated data in machine learning
has been essential because real-world data with exhaustive
annotation is expensive to scale, or even impossible to ac-
quire. Promising synthetic generators and datasets have
been proposed to support various tasks in different domains,
including CARLA [24] and ParallelDomain [1] for scene
analysis and behavior understanding in autonomous driv-
ing, Flying Chairs [23] and Sintel [17] for optical flow, and
ThreeDWorld [27] and Kubric [31] for a wide variety of per-
ception tasks in general scenes. We observe a wide variety
of data efficiency and sim2real gaps on different tasks. For
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Figure 2. Simulated datasets. (a) We show six training exam-
ples – these videos consist purely of randomly generated scenes
in TCOW Kubric. (b) We show our synthetic benchmark (with
annotations) where the actions are scripted – targets fall into con-
tainers which are pushed by boxes sliding across the floor and sub-
sequently colliding with them.

example, high generalizability can be observed in low-level
feature tasks such as optical flow [62]. On the other hand,
for tasks that involve more semantic or global context, syn-
thetic data usually presents a more significant domain gap
when transferred to the real world [33,36,65]. Thus, select-
ing the right signal or task to learn from simulation is also
critical.

Our experimental results indicate that, without the need
for any domain adaptation techniques, reasoning about ob-
ject persistence by focusing on occluders and containers in
simulated environments brings forth a surprisingly promis-
ing generalization capacity to the real world, although the
overall performance is still below human abilities.

3. Task
In order to tackle object persistence thoughtfully, we pro-

pose a methodology that focuses not only on attempting to
localize objects at all times, but also prompts models to ex-
plicitly consider and decide on possible containers or oc-
cluders that might be in the way.

Define x ∈ RT×H×W×3 as the RGB-valued input
video, and mq ∈ RH×W as the binary query mask, which
perfectly marks the visible pixels belonging to an instance
of interest in the first frame. Next, we define the function
f , typically a neural network, whose goal is to produce seg-
mentation masks tracking the target object and temporally
propagating its mask to densely cover the rest of the video.
Unlike traditional VOS settings, though somewhat similarly
to [77], f must actually predict a triplet of masks over time:

ŷ = f(x,mq) = (m̂t, m̂o, m̂c) (1)

Here, m̂t ∈ RT×H×W is the instance being tracked,
m̂o ∈ RT×H×W is its frontmost occluder (whenever it
exists), and m̂c ∈ RT×H×W is its outermost container

(whenever it exists). Because the target object always exists
somewhere (even if located out-of-frame), the ground truth
mt is well-defined for all frames. In contrast, the occluder
and container masks, mo and mc, can be set to all-zero at
moments where the target is not occluded or contained.

The triplet of ground truth segmentation masks
(mt,mo,mc) ought to fully characterize all (i.e. visible +
invisible) pixels of their respective objects, as if X-ray gog-
gles were provided from the camera’s point of view. For
this task to become feasible for objects that have become
completely hidden, it clearly requires f to learn a notion of
object permanence.

However, precisely pinpointing invisible objects is not
always possible in practice, which compels us to find a way
of dealing with irreducible uncertainty in a principled fash-
ion. Our solution is to ask the model to reveal which con-
tainer or occluder was responsible for enveloping or hid-
ing a target object, leading to a more expressive and inter-
pretable representation. Figure 2b illustrates this concept.

Finally, in order to operate in a causal (online) fashion,
the predicted set of masks ŷt at any time t ∈ [1, T ] may de-
pend only on all past input frames x≤t up until the present.

3.1. Evaluation Metrics

We report the mean IoU (Intersection over Union) score,
also known as region-based segmentation similarity or Jac-
card index J [52]. In VOS, this is a conventional measure
of how well a confidence-thresholded prediction overlaps
with the ground truth mask [20, 73], and thus how well the
model succeeds at accurately tracking the queried object of
interest throughout the video.

For a sequence of target object masks m̂t, the resulting
IoU Jtarget is averaged over all frames. For the occluder
and container masks m̂o and m̂c, the respective IoU val-
ues Joccl and Jcont are averaged only over those frames
where an occluder or container actually exists in the video.
In terms of ground truth annotations, formal definitions as
to how we determine occlusion and containment events in
our framework are given in Section 5.

When evaluating multiple clips, whereas Jtarget is av-
eraged uniformly across scenes, both Joccl and Jcont are
weighted-averaged according to how many samples were
measured per video for each type. This ensures that chal-
lenging examples with more or longer-term occlusions will
be weighted more heavily than less cluttered videos where
none or only a handful of frames have an active occluder.

4. Datasets
To bring our proposed task to life, we introduce a new

collection of datasets with the intent to facilitate both learn-
ing and evaluating object permanence. Our data is derived
from synthetic sources (TCOW Kubric) as well as the real
world (TCOW Rubric). While Kubric manifests dense,
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Figure 3. Real-world benchmark. We show six examples (with ground truth annotations) from Rubric Office (a), Rubric Cup Games (i.e.
DeepMind Perception Test [55]) (b), and Rubric DAV/YTB (i.e. DAVIS [54] and YouTube-VOS [70]) (c). Here, a white outline denotes
the query mask in the first frame. A red outline denotes the main occluder in front of a (different) target object, and a blue outline denotes
the main container surrounding a target object, such that a magenta outline implies that one and the same object is responsible for both
occluding and containing the target. Finally, a green outline denotes the target instance itself when it re-emerges.

TCOW Dataset S/R # Videos # Frames / vid. Resolution # Masks / vid. # Cont. events / vid. # Occl. events / vid.

Kubric Random Sim 4000 36 480× 360 180-1188 0–1 0–4
Kubric Containers Sim 27 36 480× 360 180-252 1 0–2
Rubric Office Real 32 150–330 640× 480 3-6 0–2 0–4
Rubric Cup Games Real 14 308–463 640× 480 4-14 1–3 0–3
Rubric DAV/YTB Real 33 41–180 640× 480 2-9 0 0–5

Table 1. Dataset properties. TCOW consists of five parts. Kubric Random has a train/val/test split of 3600/200/200 scenes, and all other
datasets are strictly test sets for the purpose of evaluation. The number of containment or occlusion events is incremented every time a
potential target object enters a container or goes behind an occluder respectively.

exact annotations useful for training, Rubric comprises a
novel challenging benchmark for understanding object per-
manence in the wild. Relevant statistics are summarized in
Table 1.

4.1. Kubric

We leverage the Kubric [31] simulator as the synthetic
data generator for all training data, plus some evaluation
videos. We modify the provided MOVi-F template to insert
containers more often, which are sourced randomly from a
manually predefined list of assets within Google Scanned
Objects [25]. Every scene has between 6 and 36 objects in
total; roughly one-third of them are spawned in mid-air at
the beginning of the video.

To construct the X-ray segmentation mask ma ∈
[0, 1]T×H×W×K , we collect raw ground truth masks over
time for all pixels of all K instances separately. In addi-
tion, we study all pairs of objects to derive any possible
container-containee or occluder-occludee relationships that
might emerge. Because we have access to perfect informa-
tion in a simulated environment, the annotation framework
described in Section 5 can be applied directly.

As shown in Figure 2, we procedurally two generate ver-
sions of the TCOW Kubric dataset. First, Kubric Random
consists of a large number of cluttered scenes where the
objects are spawned with independent, random velocities,
thus causing various collisions and complex interactions to
emerge. Occlusion and containment frequently happen by
chance, encouraging neural networks to learn spatial rea-

soning skills and motion patterns from data.
Second, Kubric Containers is a more constrained set

of scripted videos, each of which portrays a single object
falling into a container that subsequently gets pushed and
displaced by a third object, i.e. a moving box, that had been
spawned simultaneously with a high initial horizontal ve-
locity. Because annotations are cheap in simulation, this is
the most densely labeled evaluation set.

4.2. Rubric

To support effective real-world evaluations, we introduce
TCOW Rubric, a diverse collection of naturalistic videos
depicting open-world objects experiencing containment and
occlusion in various circumstances, with distinct levels
of difficulty. Our data is sourced internally from videos
recorded in an office space (Rubric Office), as well as ex-
ternally from DeepMind Perception Test [55] (Rubric Cup
Games), DAVIS 2017 [54], and YouTube-VOS 2019 [70]
(Rubric DAV/YTB). Figure 3 showcases a few examples of
our three real-world datasets.

5. Labeling for Object Permanence

For evaluation and training purposes, we wish to de-
fine and distinguish occlusion and containment events when
they occur. In practice however, the state of whether an ob-
ject is being occluded or being contained by another is not
always clear-cut, because both concepts can be treated as a
spectrum. In the following discussion, a so-called occluder-
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occludee or container-containee relationship refers to a pu-
tative object (that is not the target itself) acting as an oc-
cluder or container, i.e. it is responsible for either hiding
or encompassing the target instance of interest, denoted the
occludee or containee respectively. A clear formalism is re-
quired, which we first describe in the context of simulated
data, where perfect information is available.

Unlike occlusion, we regard containment as being funda-
mentally a 3D phenomenon, because the fact that one object
is inside another can generally be stated independently of
camera viewpoints. In contrast, occlusions are by definition
purely a function of perspective projections to 2D images.
Hence, occlusion and containment exist as separate princi-
ples and are also calculated in different ways.

5.1. Visible versus X-ray annotations

Consider a dynamic scene with K (not necessarily
unique) objects, such that any recorded video x ∈
RT×H×W×3 will visually depict up to K objects plus the
background. Define mv ∈ [0,K]T×H×W as an integer-
valued visible segmentation mask over time that marks the
1-based instance ID for each pixel in x, where 0 is reserved
for the background. Define ma ∈ [0, 1]T×H×W×K as a
binary-valued X-ray segmentation mask over time. That is,
per frame t ∈ [1, T ] and per object index k ∈ [1,K], the
pixels in ma are essentially boolean indicators of whether
hypothetical rays emanating from the camera would hit in-
stance k at least once if it were the only object in existence.1

An arbitrary combination of objects can reside along a sin-
gle ray, implying that in principle, any binary pattern is pos-
sible along the last dimension of ma. In particular, all val-
ues will be zero if and only if that pixel is part of the back-
ground.

5.2. Quantifying Occlusion

Assuming the occludee has a well-defined boundary
mask, there exist varying levels of occlusion by any oc-
cluder, and we approximate this by measuring and com-
paring the number of visible versus total (i.e. visible + in-
visible) pixels. Specifically, the occlusion fraction (or per-
centage) ok,t ∈ [0, 1] for instance k at time t is defined as
follows:

ok,t = 1−
∑

x,y 1 [mv(t, y, x) = k]∑
x,y ma(t, y, x, k)

(2)

where mv ∈ [0,K]T×H×W and ma ∈ [0, 1]T×H×W×K

are the previously defined visible and X-ray segmentation
masks respectively, illustrated in Figure 4a.

We choose a threshold of 95%, which means that when-
ever the occlusion fraction satisfies ok,t ≥ 0.95, then k is

1Note that every object in isolation is treated purely as the sum of its
pixels from a 2D perspective. As such, intra-object phenomena such as
self-occlusion are ignored in this paper in favor of inter-object phenomena.

(a) Detecting occlusion takes place by comparing visible segmentation
masks mv (top) with X-ray segmentation masks ma (bottom – colors are
assigned randomly) to (1) identify which objects have become invisible
at any point in time, and (2) for every such event, find out exactly which
occluder is responsible.

(b) Detecting containment occurs by comparing the 3D bounding boxes
between all pairs of instances, revealing when a smaller object (marked in
gray) is located inside a concave larger object (marked in blue).

Figure 4. Visualizations for understanding the methodology for
gathering ground truth information with respect to inter-object in-
teractions that pertain to object persistence.

said to be invisible. Moreover, whichever object l has the
most (visible) pixels in front of instance k is designated as
its main occluder at time t, and consequently populates the
ground truth occluder mask mo for that frame.

5.3. Quantifying Containment

We define bk,t ∈ R3×8 as the spatial world coordinates
of the eight corners of the 3D bounding box of instance k
at time t, illustrated in Figure 4b.2 For every other object
l, the pair-wise containment fraction (or percentage) ck,l,t
between a containee k and its putative container l is defined
as follows:

ck,l,t =
|bk,t ∩ bl,t|

|bk,t|
(3)

where ∩ is the geometric intersection operator, and |bk,t|
denotes the physical 3D volume of the cuboid enveloping
instance k.3

2These coordinates are embedded in a shared frame of reference with
respect to the center of the Kubric scene, although the boxes themselves
are not axis-aligned – instead, they follow the canonical object frame and
rotate along with its pose.

3For example, |bk,t| can be calculated as the absolute value of the de-
terminant of the matrix containing the three basis vectors spanning the 3D
cuboid associated with bk,t. As for bk,t ∩ bl,t however, it is non-trivial in
practice to measure volumes of the arbitrary polyhedra that may arise from
intersecting two unaligned cuboids, so we instead approximate this value
by densely sampling points inside bk,t and calculating the fraction of them
that also reside within bl,t.
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We choose a threshold of 75%, which means that when-
ever ck,l,t ≥ 0.75 (i.e. more than 75% of the target’s volume
is enclosed by a container l), then l is designated as the main
container of k, populating the ground truth container mask
mc for that frame.

Rarely, we need to disambiguate multiple candidate con-
tainers {l1, . . . , ln}, with ck,li,t ≥ 0.75,∀i ∈ [1, n]. This
can happen e.g. in the case of nested containment if k is
the innermost object. In this case, we search for whichever
li is the “least contained” by any other lj , and is as such
the outermost container surrounding k as well as all other
candidates. Specifically, the main container li of the target
instance k at time t is defined by the solution to the opti-
mization problem i = mini maxj cli,lj ,t.

5.4. Annotations in the real world

While it is possible (albeit expensive) to obtain visible
segmentation masks mv in natural videos via human anno-
tation, accurate X-ray segmentation masks ma for cluttered
scenarios can typically only feasibly be retrieved via simu-
lation due to inherent ambiguity.

For our Rubric datasets, we first select a sparse subset
of key frames depicting salient moments of interest in each
video. Then, we manually label these moments with either
a target mask mt when the object is fully or mostly visible,
or a frontmost occluder when it is nearly completely invis-
ible, and/or an outermost container mask when it is fully
enclosed by (the convex hull of) another object. All an-
notations, except where DAVIS or YouTube-VOS provided
them already, were drawn by a single expert annotator by
filling roughly a dozen connected line segments.

6. Experiments

In this section, we evaluate two state-of-the-art,
transformer-based neural network models, in addition to
several heuristics that use ground truth annotations to gener-
ate predictions. We report how well each baseline performs
on both synthetic and real-world data, and analyze the main
trends in success versus failure cases.

6.1. Baseline Models

AOT: Video object segmentation (VOS) is perhaps the most
similar task to our own, so we adopt the competitive Asso-
ciating Objects with Transformers (AOT) method [73] as-
is and retrain it on Kubric to teach it to track through oc-
clusions, i.e. to produce the target mask m̂t from an input
video x and query mask mq . We take an AOT-B checkpoint
pretrained on static images (see [73] for details), and retrain
the network on the training split of Kubric Random. How-
ever, since AOT is originally trained on YouTube-VOS and,
therefore, already capable of segmenting objects in video,

we also evaluate a plug-and-play variant of AOT-B without
any further learning.

TCOW (Ours): For our second baseline, we customize the
competitive TimeSFormer model [11] as backbone to pre-
dict a triplet of masks (m̂t, m̂o, m̂c) given (x,mq), in-
stead of a category. We leverage its attention-based spa-
tiotemporal context modeling capabilities and treat the out-
put sequence as a feature map for dense video segmenta-
tion. Specifically, we ignore the classification token in favor
of a linear projection from the set of embeddings after the
last self-attention block back to a set of image patches of
size 16 × 16 × 3 that, when spatially recombined together,
constitute the predictions for target, occluder, and container
masks. To ensure a fair comparison with AOT, we apply
a causal mask to the attention weights inside the tempo-
ral self-attention block, to prevent information from leaking
backward in time during inference. Following [11], we ini-
tialize the network weights with a ViT-Base [22] ImageNet-
pretrained checkpoint, and similarly retrain it on the train-
ing split of Kubric Random.

6.2. Baseline Heuristics

Video instance segmentation (VIS) [71] is another
closely related task. We introduce oracle baselines that have
access to perfect visible instance segmentation masks and
track target objects or their occluders or containers by se-
lecting the appropriate instance from the ground truth anno-
tations. While varying levels of thoroughness exist in im-
itating and repurposing expert VIS models toward object
permanence, we choose the following four in order of in-
creasing complexity:

Copy query: Since VOS models can see the ground truth
label associated with the first frame, a simple baseline is to
propagate this mask to future frames without changing it.

Static mask (during occlusion): The target object is seg-
mented perfectly whenever visible or partially occluded.
During full occlusions (as defined in Section 5), we copy
and propagate the last non-occluded ground truth X-ray
mask, and hold it in that location until it re-emerges again,
at which point we continue the perfect tracking routine.

Linear extrapolation (during occlusion): This baseline is
an extension of Static mask that explicitly encodes and im-
plements the constant velocity assumption that is often used
as a prior in earlier works [15, 41, 47, 64, 75]. When the tar-
get instance enters a total occlusion at time t, its center of
gravity in the two preceding frames is used to estimate an
instantaneous speed vector, which is used to propagate the
ground truth X-ray mask from frame t until the next disoc-
clusion occurs, at which point we return to perfect tracking.
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Method Training set Kubric Random (test set) Kubric Containers
Jtgt,all Jtgt,invis Joccl Jcont Jtgt,all Jtgt,invis Joccl Jcont

AOT (direct plug) Static + YouTube-VOS 30.4 0.4 0.5* 1.3* 22.5 0.9 4.6* 2.3*

AOT (visible only) Static + Kubric 35.0 0.5 0.7* 1.4* 23.1 0.7 2.0* 1.9*

AOT (cartoon) Static + Kubric (flat) 29.8 5.4 3.7* 4.1* 20.4 0.9 4.2* 4.7*

AOT [73] Static + Kubric 41.3 6.8 5.1* 4.9* 26.5 2.5 6.8* 5.9*

TCOW (visible only) ImageNet + Kubric 44.7 0.1 64.6 60.0 25.2 0.1 73.9 76.3
TCOW (cartoon) ImageNet + Kubric (flat) 31.3 5.6 30.0 43.6 21.7 2.3 26.2 40.1
TCOW ImageNet + Kubric 53.0 16.6 70.5 71.6 36.8 16.0 76.8 78.2

Copy query - 5.8 0.4 - - 7.8 0.5 - -
Static mask† - 58.3† 10.1† - - 39.3† 10.2† - -
Linear extrapolation† - 59.8† 15.6† - - 39.6† 10.8† - -
Jump to occluder† - 48.1† - 69.3† - 32.5† - 87.2† -

Table 2. Results in TCOW Kubric (synthetic). We report the average IOU [%] per frame (higher is better). Our TCOW model outper-
forms most other baselines and ablations, and can mark both containers and occluders even more accurately than the target object itself.
*Since AOT is incapable of outputting multiple masks for a single query instance, we compare the same prediction with all three ground
truths. †Heuristic that uses privileged information, i.e. can access ground truth annotations.

Figure 5. Qualitative results for TCOW Kubric (synthetic). All
visualized predictions are made by the TCOW network. The first
column shows the first frame along with the query mask highlight-
ing the object we wish to track. The query object can be tiny, so
we encircle it with a yellow dashed line for clarity.

Jump to occluder: The target object is segmented perfectly
to produce m̂t until the first full occlusion occurs at time t.
Then, whichever instance has the highest number of visible
pixels in front of the target’s ground truth X-ray mask (i.e.
its main occluder) takes on the role of the object to track
starting at frame t, filling in m̂o.4 This heuristic is similar in
nature to switching to tracking the nearest object when the
current one has been lost, but is more powerful as it assumes
knowledge of the responsible ground truth occluder. It is
the most advanced heuristic in the sense that it explicitly
considers and populates the occluder mask mo, while the

4Since this occluder could potentially itself also become occluded by
yet another object, the described procedure may be applied recursively.

previous three heuristics pertain to the target mask mt only.

6.3. Model Ablations

Foreshadowing decent results, it is worth asking where a
model’s performance and generalization ability comes from
in the context of object permanence.

Visible pixels only: How important is the ability to access
and directly use X-ray annotations as ground truth masks
for learning to track with object permanence? We study
how the results change if we supervise models with only
the visible parts of target objects and putative occluders or
containers.

Cartoon training data: How important is it to ensure
a faithful visual appearance of scenes when learning to
track with object permanence? Visual realism, or the lack
thereof, is often a cause for concern when working with syn-
thetic data. While no perfect simulator exists, Kubric boasts
a respectable degree of realism. Hence, we wish to examine
how influential this aspect really is. To make Kubric look
significantly less photorealistic, we turn off all textures by
uniformly replacing all objects with unique, randomly cho-
sen colors, as if every frame was replaced with its visible
instance segmentation mask mv .

6.4. Results

Table 2 shows quantitative results on simulated data.
Jtgt,all represents the mean Jaccard index of the target in-
stance over all frames, but to study the localization perfor-
mance of hidden objects, Jtgt,invis considers only frames
where the target is fully occluded by another object. On
average, both AOT and TCOW perform somewhat sim-
ilarly in terms of segmenting the target object, although
TCOW shines in recognizing the correct occluder or con-
tainer whenever the target becomes occluded or contained
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Method Training set Rubric Office Rubric Cup Games Rubric DAV/YTB
Jtarget Joccl Jcont Jtarget Joccl Jcont Jtarget Joccl

AOT (direct plug) Static + YouTube-VOS 78.2 5.3* 8.2* 41.7 3.3* 4.3* 63.4 8.6*

AOT (visible only) Static + Kubric 58.0 4.8* 6.9* 44.7 4.5* 4.6* 51.9 10.0*

AOT (cartoon) Static + Kubric (flat) 45.6 2.9* 3.0* 38.6 10.6* 9.6* 44.5 11.2*

AOT [73] Static + Kubric 54.1 6.4* 8.0* 50.2 13.1* 11.8* 50.8 12.7*

TCOW (visible only) ImageNet + Kubric 72.5 39.2 12.5 34.8 27.6 3.5 51.3 31.6
TCOW (cartoon) ImageNet + Kubric (flat) 35.7 12.1 7.7 31.9 8.8 14.3 22.4 9.2
TCOW ImageNet + Kubric 69.4 30.1 11.7 38.3 35.0 7.6 52.8 33.4

Copy query - 12.5 - - 18.6 - - 15.8 -

Table 3. Results in TCOW Rubric (real-world). We report the average IOU [%] per frame (higher is better). *Since AOT is incapable of
predicting multiple masks for a single query instance, we compare the same output with all three ground truths.

Figure 6. Qualitative results for TCOW Rubric (real-world). All visualized predictions are made by the TCOW network. We show six
success cases in the left and middle columns, and three failure cases on the right.

respectively. The most privileged baseline algorithm (Jump
to occluder) also works well for many cases, but is inca-
pable of distinguishing containment from occlusion.

Figure 5 demonstrates several examples produced by
TCOW, the best-performing model, on Kubric data. In most
cases, the main containers or occluders responsible for sur-
rounding or concealing the target are segmented very accu-
rately in nearly all frames.

Table 3 shows real-world numerical results, categorized
by data source.5 Because AOT is the result of years of op-
timization by the VOS community, it boasts strong results
for segmenting target objects, especially visible ones. How-
ever, it is trained with only a relatively short context of 5
frames, which works well for conventional VOS, but seems
to break down in terms of longer-term spatiotemporal rea-
soning, which is required for object permanence.

The decent performance of the ‘TCOW (visible only)’
ablation suggests that it is often more fruitful to track the
surrounding occluder or container of a fully hidden target
object k rather than to try to precisely localize k at all times,
which supports our task definition in Section 3. Moreover,
the fair performance of the ‘TCOW (cartoon)’ ablation sug-
gests that learning the correct motion signals and occlu-
sion/containment dynamics is important for capturing ob-

5There is no Jtgt,invis metric because fully occluded objects are never
labeled in the real world; only their occluders are.

ject permanence, and the remaining gap is filled by adding
more realism.

Figure 6 shows representative success cases and failure
cases made by the non-ablated TCOW model on real-world
data. In general, this network performs surprisingly well –
for example, total occlusions involving occludees and/or oc-
cluders far outside of the training distribution are often still
handled fairly correctly. For partially occluded instances,
such as the rhino on the lower left, a solid amodal comple-
tion capability is demonstrated as well.

However, there exist many Rubric videos where both
models break down almost completely. Comparing Ta-
ble 2 with Table 3, the quality of the occluder and container
masks drop substantially when moving from synthetic to
real data. Containment in particular appears to be the more
difficult concept to learn robustly [34]. We qualitatively ob-
serve that recursive containment, as exemplified with paper
bags going inside one another in Figure 6 (center right),
is among the toughest to tackle. In fact, there is not a
single such example in Rubric that is addressed satisfacto-
rily. Tracking objects through containment by upside-down
cups that are repeatedly shuffled around also turns out to
be highly demanding, especially when the cups are identi-
cal. Lastly, videos with transparent containers present yet
another failure scenario, presumably because non-opaque
objects do not exist in the Kubric training data.
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7. Discussion
In this work, we propose the challenging TCOW bench-

mark, which in its totality covers many different types of
containment and occlusion, including compositions thereof.
The TCOW model, based on TimeSFormer, shows promis-
ing yet lacking performance, and we believe future track-
ing models ought to address and resolve these scenarios
more effectively. While we have made significant strides
in solving elementary base cases of occlusion and contain-
ment, object permanence as a whole remains far from being
solved. We, therefore, invite and encourage the community
to work on this problem.

Acknowledgements: We thank Revant Teotia, Ruoshi Liu,
Scott Geng, and Sruthi Sudhakar for helping record TCOW Rubric
videos. This research is based on work partially supported by the
Toyota Research Institute, the NSF CAREER Award #2046910,
and the NSF Center for Smart Streetscapes (CS3) under NSF Co-
operative Agreement No. EEC-2133516. The views and conclu-
sions contained herein are those of the authors and should not be
interpreted as necessarily representing the official policies, either
expressed or implied, of the sponsors.

References
[1] Parallel domain: Data pipeline for computer vision. https:

//paralleldomain.com/, March 2021. 2
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beláez, Alex Sorkine-Hornung, and Luc Van Gool. The 2017
davis challenge on video object segmentation. arXiv preprint
arXiv:1704.00675, 2017. 4
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casens Continente, Larisa Markeeva, Dylan Banarse, Ma-
teusz Malinowski, Yi Yang, Carl Doersch, Tatiana Mate-
jovicova, Yury Sulsky, AntoineMiech, Skanda Koppula,
Alex Frechette, Hanna Klimczak, Raphael Koster, Junlin
Zhang, StephanieWinkler, Yusuf Aytar, Simon Osindero,
Dima Damen, Andrew Zisserman, and João Carreira. Per-
ception Test: A Diagnostic Benchmark for Multimodal Mod-
els. Technical report, DeepMind, 10 2022. 4

10



[56] Hongje Seong, Junhyuk Hyun, and Euntai Kim. Kernelized
memory network for video object segmentation. In ECCV,
2020. 2

[57] Aviv Shamsian, Ofri Kleinfeld, Amir Globerson, and Gal
Chechik. Learning object permanence from video. In ECCV,
2020. 2

[58] Elizabeth Spelke. Initial knowledge: Six suggestions. Cog-
nition, 50(1-3):431–445, 1994. 1

[59] Elizabeth S Spelke. Principles of object perception. Cogni-
tive science, 14(1):29–56, 1990. 1

[60] Elizabeth S Spelke. Where perceiving ends and thinking be-
gins: The apprehension of objects in infancy. In Perceptual
development in infancy, pages 209–246. Psychology Press,
2013. 1

[61] Elizabeth S Spelke and Katherine D Kinzler. Core knowl-
edge. Developmental science, 10(1):89–96, 2007. 1

[62] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In European conference on com-
puter vision, pages 402–419. Springer, 2020. 3

[63] Pavel Tokmakov, Allan Jabri, Jie Li, , and Adrien Gaidon.
Object permanence emerges in a random walk along mem-
ory. In ICML, 2022. 2

[64] Pavel Tokmakov, Jie Li, Wolfram Burgard, and Adrien
Gaidon. Learning to track with object permanence. In ICCV,
2021. 2, 6

[65] Marco Toldo, Andrea Maracani, Umberto Michieli, and
Pietro Zanuttigh. Unsupervised domain adaptation in seman-
tic segmentation: a review. Technologies, 8(2):35, 2020. 3

[66] Basile Van Hoorick, Purva Tendulkar, Didac Suris, Dennis
Park, Simon Stent, and Carl Vondrick. Revealing occlusions
with 4d neural fields. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
3011–3021, 2022. 1, 2

[67] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia
Polosukhin. Attention is all you need. In NeurIPS, 2017. 2,
12

[68] Paul Voigtlaender and Bastian Leibe. Online adaptation of
convolutional neural networks for video object segmenta-
tion. In BMVC, 2017. 2

[69] Huaxin Xiao, Jiashi Feng, Guosheng Lin, Yu Liu, and Mao-
jun Zhang. Monet: Deep motion exploitation for video ob-
ject segmentation. In CVPR, 2018. 2

[70] Ning Xu, Linjie Yang, Yuchen Fan, Jianchao Yang,
Dingcheng Yue, Yuchen Liang, Brian Price, Scott Cohen,
and Thomas Huang. Youtube-vos: Sequence-to-sequence
video object segmentation. In ECCV, 2018. 4

[71] Linjie Yang, Yuchen Fan, and Ning Xu. Video instance seg-
mentation. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 5188–5197, 2019. 6

[72] Linjie Yang, Yanran Wang, Xuehan Xiong, Jianchao Yang,
and Aggelos K. Katsaggelos. Efficient video object segmen-
tation via network modulation. CVPR, 2018. 2

[73] Zongxin Yang, Yunchao Wei, and Yi Yang. Associating ob-
jects with transformers for video object segmentation. Ad-
vances in Neural Information Processing Systems, 34:2491–
2502, 2021. 2, 3, 6, 7, 8, 12, 13

[74] Zongxin Yang, Yunchao Wei, and Yi Yang. Collabora-
tive video object segmentation by multi-scale foreground-
background integration. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 2021. 2

[75] Qian Yu, Gérard Medioni, and Isaac Cohen. Multiple tar-
get tracking using spatio-temporal markov chain monte carlo
data association. In CVPR, 2007. 2, 6

[76] Greg Zaal, Rob Tuytel, Rico Cilliers, James Ray Cock, An-
dreas Mischok, Sergej Majboroda, Dimitrios Savva, and
Jurita Burger. Polyhaven: a curated public asset library
for visual effects artists and game designers. https://
polyhaven.com/hdris, 2021. 12

[77] Guanqi Zhan, Weidi Xie, and Andrew Zisserman. A tri-
layer plugin to improve occluded detection. arXiv preprint
arXiv:2210.10046, 2022. 2, 3

11

https://polyhaven.com/hdris
https://polyhaven.com/hdris


Tracking through Containers and Occluders in the Wild

Supplementary Material

A. Dataset Details
For our training set TCOW Kubric Random, all scenes

are generated based on the MOVi-F6 template code [31], but
with several modifications. Backgrounds are chosen ran-
domly from the Polyhaven HDRI collection [76], and all
objects originate from Google Scanned Objects (GSO) [25].
Every scene spawns s static objects lying on the ground, and
d dynamic objects falling down when the video starts. s is
uniformly randomly chosen between 4 and 24 (inclusive),
while d is uniformly randomly chosen between 2 and 12
(inclusive).

In order to increase the frequency of containment, we
manually scan the GSO library to designate 114 out of 1,032
GSO assets as containers, which can be either deep or shal-
low. For each scene, at least three out of the s static objects
must be containers, and while object sizes are chosen ran-
domly, we also make containers slightly bigger on average.
An assortment of examples is shown in Figure 7.

The most time-consuming part of the simulation
is generating the X-ray segmentation mask ma ∈
[0, 1]T×H×W×K , which is used for supervision as it ex-
poses all pixels of all K instances separately over time, re-
gardless of occlusion. This is done by running the PyBullet
physics simulation [21] once, thus letting the object interac-
tions develop over time within the dynamic scene, then ren-
dering the input video via Blender [14] with all instances
present, following [31]. Next, we isolate each object by
turning off the visibility of all other objects (they are es-
sentially temporarily removed from existence), and render-
ing those videos again separately to iteratively produce one
channel of ma at a time.

Finally, even though the frame rate of video clips in the
Rubric benchmark is variable (i.e. between 4 and 30), ren-
dering of all Kubric simulations happens at a single fixed
value of 12 FPS.

To construct the Kubric Random dataset, consisting of
4,000 videos of 36 frames each with spatial dimension
480 × 360 along with RGB information, depth maps, and
segmentation maps (mv and ma), 256 AMD EPYC 7763
CPU cores worked for 30 days.

A.1. Mass Estimation

Mass plays an important role in determining the outcome
of object dynamics and interactions. While GSO provides
a diverse collection of high-quality scanned 3D models for
household items, physical properties such as mass and fric-

6This is the same as MOVi-E, but with a small degree of motion blur
added to the video recorded by the virtual camera.

Figure 7. Containers in GSO. We mark roughly 11% of the as-
sets in Google Scanned Objects [25] to be containers, which are
spawned more often than average compared to other object types
in Kubric Random.

tion were not captured for many objects [25]. In Kubric
MOVi-F, a constant density assumption is therefore made
by default to estimate mass from volume [31]. In an at-
tempt to increase the realism of our training data, we lever-
age GPT-3 [16] to produce rough estimates of the mass of
every object in the GSO library based on its description
and metadata. This is illustrated in Figure 8. In practice,
we calculate and apply the geometric mean of the original
and LLM-estimated mass, because the numbers provided by
GPT-3 are, qualitative speaking, not always very accurate.

B. Network Implementation Details
B.1. AOT

Since AOT is designed for VOS, we keep the entire
pipeline of the AOT model intact for fairness. Follow-
ing [73], at training time, a context window of 5 frames
is fed into the model for a single training step, while at test
time, the target object mask is propagated throughout the
entire video clip from start to end.

B.2. TCOW

TCOW is a modification of the TimeSFormer network,
which operates by processing a number of chunks of space-
time patches into a transformer [11, 67]. Specifically, we
concatenate the input video and the query mask along
the channel axis to form (x,mq) ∈ RT×H×W×4 (here,
mq,t = 0 for all t ≥ 1 as only the first frame is labeled).
Similarly to Vision Transformer [22], the resulting set of
frames is decomposed into N = T × h × w small image
patches of size 16 × 16 × 4 each, with h = H

16 , w = W
16 .

After a per-patch linear projection, an input sequence of

12



Figure 8. Estimating mass for objects used in Kubric simulations. We perform text completion with a large language model. Specif-
ically, we query OpenAI GPT-3 (text-davinci-002) [16] twice for mass, twice for weight, and average the four numerical outputs after
appropriate unit conversions. The image is shown for visualization only, and is not fed to the language model. The underlined text repre-
sents the four actual completion outputs made by GPT-3. The italic parts of the input are derived from the available metadata of each asset,
and this procedure is repeated for all 1,032 GSO objects.

Figure 9. TCOW architecture. We apply the standard TimeSFormer backbone onto the input video (x,mq) following a spacetime
divided attention scheme [11], but interpret the tokens after the transformer as patches for the predicted output masks. (Multiple channels
belonging to the same patch are shown in separate tiles for clarity.)

N embeddings of dimensionality 768 is fed into a trans-
former, where we subsequently apply repeated multi-head
self-attention blocks on these tokens.

The output sequence is treated as a spatiotemporal fea-
ture map for the purpose of dense video segmentation.
Each element after the last attention layer is linearly pro-
jected back to image space, resulting in a set of patches
of 16 × 16 × 3, where the last dimension represents the
predicted triplet of masks (m̂t, m̂o, m̂c). The vectors are
composed in the same order as they were decomposed at the
input side. The classification token is ignored and there is
no pooling. A diagram is shown in Figure 9.

B.3. Learning and Supervision

We train the TCOW model for tracking objects through
occlusion and containment by producing segmentation
masks for each type. The network f (as defined in Equa-
tion 1) accepts a single query instance at a time, which
makes a binary cross-entropy objective LBCE between ev-
ery output channel m̂ and its corresponding ground truth m
a logical starting point.

Since the number of frames where the target is occluded
is typically smaller than the number of frames where the
target is visible in our training set, we scale LBCE by a
factor 1+(β−1)o, where o ∈ [0, 1] is the occlusion fraction.

However, inspired by [73], we also combine LBCE

with two additional loss terms: (1) a bootstrapped variant
LBCE,k that focuses on a certain top fraction k of pixels in
each example that incur the highest individual contributions
to the loss LBCE , and (2) a soft Jaccard loss LJ [12]. The
terms are linearly combined and weighted as follows:

Lm = (λ1LBCE + λ2LBCE,k + λ3LJ )(m̂,m) (4)

Finally, the total objective is a weighted sum over the three
different output types predicted by f :

L = λtLmt
+ λoLmo

+ λcLmc
(5)

where Lmt addresses the target instance mask, Lmo is for
the main occluder mask, and Lmc is for the main container
mask. The ground truth masks for the latter two (mo and
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Figure 10. Success cases for TCOW on Rubric. All visualized predictions are made by the non-ablated TCOW network. This model
performs particularly well on relatively simple cases of (total) occlusion and/or containment in the real world, despite being trained on
synthetic data only. Some video clips with containers moving to a limited degree are also handled correctly (see middle center, or top
right). However, more advanced examples of object permanence often result in failures, shown in Figure 13, demonstrating that a lot of
room for improvement remains.

Figure 11. Qualitative results for AOT on Rubric. All visualized predictions are made by the non-ablated AOT network, and mirror
Figure 6 in the main text. Although all models are trained on Kubric data with X-ray supervision, AOT often loses track as soon as total
occlusion happens, and tends to jump to different instances or moving parts of the video (such as hands).

mc) are defined to be all-zero whenever there exists no oc-
cluder or container respectively, although for class balanc-
ing purposes, the loss is also weighted with a factor α < 1
for those frames.

Augmentations during training consist of random color
jittering (hue, saturation, brightness), random grayscale,
random video reversal, random palindromes (i.e. playing
clips forward and then backward, or vice versa), random
horizontal flipping, and random cropping. We do not apply
any augmentations at test time.

In Kubric Random, there are many possible objects with
available annotations to track. At training time, we as-
sign a difficulty score to every instance (that is visible in

the first frame) based on its average occlusion fraction and
how much motion it experiences over time. The query is
then sampled randomly but non-uniformly, with preference
given to the harder to track target objects. At test time, we
measure and average metrics over the top four instances
with the highest difficulty score per video. Other datasets
(i.e. Kubric Containers plus all of Rubric) only have one
designated target object per video clip.

In our experiments, we set (T,H,W ) = (30, 240, 320),
β = 5, (λ1, λ2, λ3) = (0.2, 0.4, 0.4), (λt, λo, λc) =
(1.0, 0.5, 0.5), and α = 0.02. The bootstrap fraction k is
a function of time, and decreases linearly from 1 to 0.15
during the first 10% of training. We use the AdamW op-
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Figure 12. Measuring TCOW’s ability to differentiate occlu-
sion from containment. The first video is a control example
where the duck is inserted inside the mug, such that it becomes
simultaneously a container and occluder (magenta). In the second
video, we pretend to do the same, but actually place it behind the
mug, such that it becomes an occluder (red) only. Our TCOW
model handles both cases correctly, suggesting that the learned
representation is capable of spatial reasoning in a way that goes
beyond just memorizing object class information (e.g. a container
must contain an object whenever it hides one).

timizer and train for 70 epochs, which takes 3 days on
2 NVIDIA RTX A6000 GPUs. Inference (without gradi-
ents) happens in 0.27 seconds for a single clip, which cor-
responds to roughly 110 FPS.

C. More Qualitative Results
Please see Figures 10, 11, and 13, as well as

tcow.cs.columbia.edu for videos along with explanations.
We recommend viewing the project webpage in a modern
browser.

C.1. Differentiating containers from occluders

Distinguishing occlusion from containment can be chal-
lenging, especially if a potential container is itself responsi-
ble for merely occluding but not containing a target object.
One aspect of our TCOW Rubric Office benchmark there-
fore analyses the interesting scenario where we attempt to
trick the model into confusing containment with occlusion.
We evaluate this in Figure 12, which illustrates that the
TCOW network capitalizes on motion cues, and not (only)
object category information.
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Figure 13. Failure cases for TCOW on Rubric. All visualized predictions are made by the non-ablated TCOW network. Multiple trends
could be discerned among real-world scenarios where the model fails, which can roughly be summarized as: (1) identical containers, one
of which is holding the target object, being shuffled around; (2) nested containment, e.g. when a mug is placed inside a larger box; (3) the
occluder and occludee are visually very similar, e.g. people occluding people or animals occluding animals. By releasing this challenging
benchmark to the community, we hope future work will be able to address these cases more successfully.
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